DOCUNENT RESUME

ib 087 425 IR N0OO 169
AUTHOR Braun, Peter H.

TITLE Roflections on CAl Lanquage Design.

PUB DATE Apt 73

NOTE 14p.; Paper presentod at the Association for

Educational bData Systeas Annual Convention (New
Orleats, Louisiana, April 16 through 19, 1973)

EDRS PRICE MF-%0.65 HC-$3.29

DESCHIPTORS sCounparative Analysis; #*Computer Assisted
Instruction; Coaputer Programs; Computer Science;
Prograving; *Proqraming Languages

IDENTIFIERS AEDS; APL; Association for Fducational Data Systeas;
BASIC; #*Course Authoring Language; COURSEWRITER: Meta
Language

ABSTRACT

The need for a high level computer-assisted
instructional (CAl) coutsc authoring language is discussed and the
capabilitaios of COURSEWRITER, BASIC, and APL for meeting this necd
are cowmpared. The demand for such a lanquage is first docusented and
soac historical trends of CAI language development and use are .
revieved. Folloving this, the appropriateness of each of the three
languages for authoing purposes is ezamined, and the main general
design features and functions of a CAl authoring language are
outlined. Econonic and other considerations involved in the selection
and implementat.on of a lexicon of operations are scrutinized. The
conclusion is recached that it would seem fruitful to design a
meta-language based on APL which would «mbody functions for the
necessary instructional strategies and response¢ anezlyses. It is
stated tha such a language vould greatly facilitate the use of CAIX
by the non-sophisticated teacher-author by allowing him to confine
his activities to stating the content of his lesson and the strategy
of his presentation. (PB)

REFLECTIONS ON CAT LANGUAGE DESIGN

U OEFantvENT Ot at syt
FOULATITNE WELS ANE

ED 0874725

bk b AL Peter H. Braun

Bite, ity

UG A 18M Canada Laboratory

INTRODUCTION

There appears to be a need for a high level Computer Assisted
Instruction (CAl) course authoring language. Grubb (1), for example,
stated that CAl lacks a comprehensive notational system for describing
and comparing fnstructional programs and providing new desians. This
lack of a comprehensive notational system has sparked a variety of attempts
at improving current authoring languages, and defining new high level

authoring systems. For example,

At the conference of the Association for the Development of
Instructional Systems (ADIS), August 8-11, 1972, eleven of the
twenty papers presented dealt with improved authoring methods,

or proposals for advanced authoring systems, thug pointing to

a pre-occupation with improving authoring methods among CAI users.

Several agencies have recently advanced proposals for a universal

high level authoring syntax. The most comprehensive efforts are those
of the National Research Council, Canada, (September 1972), and the
University of Freiburg, Germany, in cooperation with Simon Fraser
Unfversity (cince Fall, 1971),

Also, it would appear that authoring systems based on Iverson's

APL language are becoming increasingly popular. Noteworthy among
these are the recent efforts at Cornell University (in cooperation
with the IBM Systems Research Institute) on a system called ATS

(A Terminal System), the University of Toronto {Erindale Campus) on
a system calTZd APL/CAT (Computer Assisted Tutorials), and (3) the
CAL - system at Golden West College in HuntTngton Beach, California.

The success of authoring systems based on APL rests primarily on
the fact that the APL Tanguage is sufficientiy flexible to permit
a variety of unusually sophisticated approaches to answer analysis
and response checking, thus permitting much more flexibility in
student - computer dialog.

In the "Index to Computer Assisted Instruction", (3) lists a total of
64 currently used different authoring languages and/or systems.

To be sure, all but a dozen of these have only been used in local
experimental situations. Yet, the mere fact that this many known

DR. PETER BRAUN received his prh.D. in Educational Psychology from the
University of Alberta, Edmonton. He is currently working on problems related
to computer usage in education at the IBM Canada Laboratories in Toronto,
Canada.

205

attespts gt defining authoring lanauages have been made indicates
that a universaliy acceptable autnoring system does not yet seem to
exist,

The atove eramples all emphasize the existence of a need for a high level
authoring lancuage,

The most commonly advanced rationale to supnort this contentfon is that
CAl has lagged behind because the currently avaiiable lanauages require
too much programming effort per hour of terminal instruction. Commonly
used figures for writinag CAI lessons based on Course-Writer range from
ratios of 100 $ 1 with simple materials, to 500 ¢ 1 in the case of complex
material, Not many teachers are willing to use a system which, onc? they
spent time tc master it, may still require upward of one hundred hours
of preparation time for each hour of course material. Such a Ssystem
becomes economically feasible only if the lessons 50 prepared will be
useable by many students. Hence, CAD lessons must ideally be prepared
such that they can easily and repeatedly be used by large numbers of
students who might conceivably use a variety of different computers. In
other words, economic feasibility of C/.I depends on ease of exchangeability
of programmed course material,

Since the future expansion of CAI depends primarily on the availability
and exchanqgeability of course material, a high level CAI lanquage which
would ease the authoring burden per hour of course material, and pernit
tge exchange of course material among CAI users would certainly increase
CAT usaaqe,

SOME HISTORICAL TRENDS OF CAI LANGUAGES

In order to establish future trends, it is often useful to look at
what has hapnpened in the past. For this reason, a breakdown of the
1264 CAl programs published by Lekan (3) was performed on the basis of
the authoring lanquage used. Table 1 lists all those languages having more
than ten published programs in 1971, As can be seen, CWR, APL, and BASIC
account for 665 of total usage, with CWR in the lead. This is, of course,
not too surprising since CWR was specifically designed for the purpose of
course authoring, However, the strength of both APL and BASIC is surprising
because neither of them was designed for authoring purposes, and neither
lanquage has the built-ir facilities for recording student responses
wnizh are a major feature of CWR. Hence, the reasons tor their popular-
iy lie elsewhere. Some possible reaons might be:

APL and (to a lesser degree) BASIC are easily learned in self-
instructional fashion. The user can begin writing operational
programs with minimal subsets of the full lanquaage. In contrast,
CWR espnuses a philosophy of organization which is not self-

expl u.at y, and is difficult to understand by merely trying it
on a ter.anal,

A second reason for the popularity of APL and BASIC is likely the
mere availability of large numbers of terminals featuring one, or
both of these ianquages. This sheer availability probably encourages
the use of these languages for CAI purposes. Furthermore, the
availability of APL and/or BASIC will increase much faster than that
of CWR, because both lanquages are general purpose languages. This
will Tikely further increase their share of CAI applications in the

2

future, and contribute to their phenomenal growth rate. HNote, that in
the 1970 Index to CAl, only 17 APL courses were published. The

total number of published APL courses in 1971 was 228. Thus, airost
the entire growth within CAl between 1970 and 1971 may be attributed
to programs written in APL or BASIC. It appears that most of the
effort in CWR was expended in converting existing CW I programs to

CW 11 and/or CW I11.

In summary, ease of usaqe, and availabili.y of interactive terminals
are likely the principal factors for the popularity of APL and BASIC
as CAl authoring languages. The trend of using these languages for
writing CAl courses will, therefore, accelerate.

As can be seen from Table I, FORTRAN and ALGOL are two general purpose
languages which have at times been used for CAI course authoring while
the remaining ones on the list are all specifically designed for authoring
purposes only, However, none of them has become anywhere nearly as popular
as the first three. This is not to say that they have no merits as CAI
lanqguages, and perhaps in due time one or the other of them may rise on
the basis of special merit. Yet, without the explicit support of a major
hardware manufacturer, these languages do not appear to hold much promise
for advancing CAI, and hence they will not be discussed further.

COMPARISON OF CWR, APL, AND BASIC FOR AUTHORING PURPOSES

The three lanquages - CWR, APL, BASIC - are relatively similar in
structure. Each provides a set of basic operations to the user who combines
these to form executable programs. For authoring purposes, each of these
lanquages is at a relatively Tow level and requires the composition of
detailed instructions for the purpose of programming a CAI course. CHWR
has an initial advantage over APL and BASIC in that it performs many answer
analysis operations containing implicit branches. Suitable functions would
be required in APL and BASIC to emulate this advantage. This is, of course,
no difficulty in either APL or BASIC, as both languages have the facility
for generating user-specified functions. Indeed, such functions have been
programmed in various locations. This point, however, illustrates one of
the basic weaknesses of CWR: it is relatively difficult, and requires an
experienced systems programmer, to add additional functions to CWR. Hence,
most users quickly experience CWR as a closed system, It is not easily
espansive, 1 4, therefore. lacks a basic feature of good language design.

In add. ion, the number of functions implemented in CWR (primitive
or systems de¢ fined functions) is much smaller than those available in
BASIC or APL. In this respect, the APL lanquage probably contains the most
coumprehensive set of primitive functions of any currently available pro-
gramming language. This feature makes APL appear to the user as an open,
or easily expansive system which is adaptable to the most demanding special
purpose applications. BASIC occupies a middle ground between APL and CWR.
Its main advantage is that it runs on very small systems (DEC, Hewlett
Packard) having less than 22K of memory.

The number of functions provided by a given language is obviously
related to its iower of handling diverse problem situations. In terms of

207

TABLE 1

LIST OF THE MOST FREQUEITLY USED LANGUAGES FOR CAI AUTHORING PURPOSES (3) ‘

Languase # of Published CAI Courses*
1971 1970

CWR I/11/111 401 394

1 (48) (147)

o Il (260) (213)

CW III (93) (34)
APL 228 17
BASIC 218 : 84 "l’
FORTRAN 96 43
TUTOR 73 118
CAILAN 31 31
PICLS 25 25
META SYMBOL 19 0
CAN 15 0
ALGOL 14 9
PLATO 13 58

*Lekan's (1971) CAI Index 1lists 1264 courses. The 1970 index lists 910.

language design, the functions provided by a language form a finite list

. of symbols (lexfcon) from which patterned structures can be generated.
The symbols are essentially analoqus to the verbs of a natural language,
and the patterned structures to the sentences formed from combining nouns
and adjectives (the data) with the verbs (the operations) under the rules
of grammar.

Note that the rules of grammar do not permit a random combination of
the words. In order to be meaningful, the sentences formed by combining
elements from the lexicon must adhere to certain granmatical patterns.
However, {f the lexfcon is large, a large number of meaningful and
syntactically correct structures can be generated. On the other hand, a
small lexicon obviously limits the generation of many menaingful patterns.

GENERAL DESIGN FEATURES OF A CAI AUTHORING LANGUAGE

One can deal with the topic of design on at least two levels: a
general level dealing with desirable desion features, and a specific level
dealing with the actual implementation. On the general level, one may produce
a list of desirable features which, when scrutinized for details of imple-
mentation, may turn out to be economically unfeasible or impractical. A
suitable compromise will then be required. However, the general features
must be specified first in order to obtain & gross fit - an artist' sketch,
so to speak - of the means to attain certain goals. These goals are
elucidated next.

. The primary purpose, or goal of any CAI language is to enable teachurs
to record their lessons in some systematic fasion which lends itself to

translation into a machine readable and executable format. This is not as
easy as it may sound because it reguires precise definitions of the class-
ronm environment and the teaching-learning process, and these are not
readily available. The very nature of the classroom environment is often
characterized by a certain degree of secretiveness, as much of it is conducted
behind closed doors. Also, there is no uniform agreement about the most
effective type of lesson presentation. A lesson usually consists of two
distinct elements: the material to be taught, and the instructional strategy
used by the teacher. Whereas the material may be relatively unchanging from
occasion to occasion, or among instructors teaching the same course, the
teaching strategies vary greatly. Often, they depend to some extent on the
teacher's abilities and interests, the number and type of students in the
class, as well as prevailing environmental conditions. Hence, it is this
variability in teaching strategies which a CAI language must be able to
capture if it is to be an effective agent of communication between teachers
and students - using a computer as an interface.

While instructional strategies exist in many variations due to the
aforementioned influence of teacher and student personality variables, there
appears to be nevertheless a relatively small number of basic types of strategies
in current use. For example, Grubb (1) analyzed a sample of 50 CAI programs
on the basis of the instructional strategies used in these programs. (Unfortun-
ately, his sample was not random, contained only 37 independent authors, and
was limited exclusively to programs written in CWR Il intended for use with

é the IBM 1500 system.) His analysis revealed that each of the 50 programs
could be classified into a scheme of five categories on the basis of the
prevalent instructional strategy used in each. These categories were

roughly named:
Q 5

209

Drill modes of interaction,

Practice,

Diagnosis and prescription, ‘
Gaming and similation,

Exploration.

These five patterns of instructional strategies, then, were derived
empirically from the work of 37 teachers who have made the effort of recording
their lessons in a medium suitable for execution on a computer, and, therefore,
permitting public scrutiny of their work.

It may not be fair to say that these five patterns are the only ones
possible. Without question, the constraints imposed by the [BM 1500
hardware and the CWR I1 language would 1imit the number of instructional
strategies reproducible through these media. Yet, by using informed intuition
rather than empirical data, Zinn (5) did not greatly surpass this list
by enumerating the following seven types of basic strategies:

Drill .
Teacher-controlled tutorial

Dialog tutorial

Simulation and gaming

Retrieval, and reorganization of information
Problem solving with computation

Artistic design and composition

As can be seen, the overlap between Zinn's and Grubb's lists is sub-
stantial. This then, would lend credence to the assertion that instructional ‘
strategies may be classifiable into a relatively small number of basic
categories. However, due to combinations and permutations, a wide variety
of "individualized" lessons is nevertheless possible.

A CAl-language, then, should minimally enable teachers to author
programs using the known instructional strategies listed above, and, hopefully,
be sufficiently flexible to allow possible expansion into presently undefined
strategies. Zinn's list of categories covers the full spectrum of currently
known data processing techniques, and perhaps some which have not yet been
attempted. Obviously, a rather comprehensive lexicon of basic or primitive
operations would be needed to satisfy such a variety of requirements.

Such a range of basic operations would, of course, be no more advantageous
to use than currently available languages because it would require the
detailed composition of programs by using merely a greater number of
primitive operators. However, by using such a large set of basic operations,
one could succeed to write programs which emulate all of the known
instructional strategies. Once this has been done, one would only need
to pass on different sets of data to these programs to generate various
executable lesson modules. Since the number of known instructional strategies
does not seem to be very large, the task of writing a suitable emulator,
or "logic" for each of these strategies is within the realm of the possible.
A teacher wanting to use such a system of logics would not need to acquire
detailed knowledge of computer programming. He would merely have to organize
his material ina fashion acceptable to the logic he wishes to use. Such a
system, then, would greatly facilitate the creation of CAI lessons, and, é
simultaneously, would permit those teachers who are inclined in this

direction to generate additional logics using the set of cperators which are
available. 6

Whereas nothing in the above proposel is really new, it deviates in one
respect from earlier proposals or curreatly available systems featuring
such function capability, namely, in respect to the specification that the
set of primitive operators must be such that all currently known instruction-
al strategies can be emulated. 1t is realized, of course, that such a
specification may be unrealistic, and perhaps not attainable. Therefore,
it is offered here as a desirable goal to be attained by a CAI-language.

A teacher's activity in the classroom is nolL confined only to teaching.
He must also evaluate the effectiveness of his instructions. For this
purpose, he must elicit, analyze, and record suitable feedback from the
students. Hence, the facility of analyzing and recording student responses,
and to summarize them for statistical purposes is another goal in the
design of a CAI language. Particulariy answer analysis requires much
sophistication. Current CAI practice usually permits only minor deviation
of the student's response from a pre-stored "correct response". This
constraint often makes CAI programs appear rigid and unnatural.

The problems encountered in answer-analysis can be classified into at
least three levels of complexity (4):

1. The arithmetic level
2. The logical level
3. The semantic lavel.

At the arithmetic level, an exact responsé is required which will
match a pre-stored answer. for example, consider the question:

3+44 =
A correct answer would be any of the following:
75 SEVEN; seven; VII; 7.0
In any case, the answer analysis is simple since the student's response
must match one element from a usually small set of elements. HNote that
multiple choice answers belong into this level.
On the logical level, the student's response can be infinitely variable.
The only restriction is that the elements of the response must conform
to a known set of rules. An example would be the response to the following
problem:
Write an equation with one unknown.

As can be seen, the response analysis must be suitable to check if the
submitted equation belongs to the class of equations having one unknown.

The semantic level is probably the most difficult. Consider this
question posed by the computer:

What is a triangle?

The number of possible correct answers is very large. Some might be:

211

A closed figure with 3 sides
A closed figure having 3 sides
An area enclosed by 3 sides

A polygon having 3 sides

A polygon formed by 3 sides

Replacing the digit '3' with 'three' in the preceding answers doubles
the 1ist. Replacing "sides" with "segments" doubles it again, etc.

The above set does, of course, not exhaust the possibilities. Additional
examples using different words mignt be:

3 points connected by lines
A polygon having three corners, etc.

The efficient analysis of such semantic responses requires techniques
known as "approximate matching". A variety of such techniques have been
developed. They usually rely on matching keywords, keyletters, or skeletons
of keywords by means of some string-matching technique. By estimating the
"goodness of fit" of the student's response, partial answers can also
be dealt with effectively. For example, suppose the student responded to
the above question as follows:

A triangle is a polygon.
A suitable answer from the computer should be:

Tt certainly is a polygon. But what makes a triangle
different from other polygons? (etc.)

Unfortunately, one can almost always "beat" this system of semantic
analysis by responding with exotic answers. But before criticizing the
method for being imperfect, we should not forget that human communication
also breaks down when one person responds to another in an insincere
and intentionally exotic fashion. An evaluation or defence of these
techniques is, however, not intended here. Rather, the above examples were
cited to illustrate the complexity of various levels of answer analysis.

The lexicon of available operations of a CAI language, then, must contain
the necessary parts for assembling functions which can deal with such complex
problems. .

Lastly, CAI language design must include record keeping specifications.
This is, of course, most easily accomplished with a computer, and, there-
fore, is a feature of all CAI languages. Yet, in their raw form, these
responses are seldom useful. Hence, suitable functions are required which
will summarize the recorded information. Such functions must yield statistical
information pertaining to at least the following topics:

Evaluation of the course and its content. This is usually called
formative evaluation.

Evaluation of a student's performance in the course. This is called
summative evaluation.

Comparative evaluation of one or more classes of students.

8

In summary, a CAI language should contain functions which (1) emulate
‘ currently known teaching strategies, (2) permit response analyses at various
levels of sophistication, and (3) record and summarize student responses in
generally accepted fashions as required for evaluative purposes. Needless
to say that such a language should embody a desirable feature of all good
design, namely, the principle of parsimony.

SOME ECONOMIC CONSIDERATIONS

i When considering the design of a CAI language, one can do a number of
things:

1. One can start from scratch by defining the lexicon of necessary
basic operations, implement them on a computer, and use them
to build the required functions for the instructional strategy
models.

2. One can use an existing (and implemented) lexicon of operations
which has been used for related work in the past and appears to
be suitable for building the required functions.

Both of these alternatives have been attempted in various locations.
The best known attempts of defining and implementing a new lexicon of opera-
tions specifically intended for CAI authoring purposes are CWR (IBM), TUTOR
and PLATO (University of I1linois), and CAN ?Ontario Institute for Studies
in Education).

‘ Currently used authoring systems based on existing languages are
ITS and CAILAN - both based on CWR, ATS, CAL, and CAT - based on APL;
CATALYST based on BASIC; and METASYMBOL - based on FORTRAN.

In addition, a vari2ty of recent attempts have been aimed at enhancing
CWR to facilitate its usage by teachers who are unfamiliar with programming
concepts, and to reduce the time required for writing CAI lessons. Some
of these are:

A coursewriter pre-processor called VAULT (Versatile Authoring Language
for Teachers) developed jointly by IBM and the University of Alberta,
featuring separation of content and logic,

A variety of assembler language functions for CWR III, written and
documented at Simon Fraser University, and a calculating function
written at the University of Texas.

An interface between CWR and PL/1 implemented at Western Washington State
University, permitting access to the best features of both languages.

A CWR-Macro system devised at Florida State University, being a direct
attempt at using the CWR macro feature for generating moduies to be
used as building-blocks in instructional logics, and

An IBM program product called ITS (Interactive Training System) featuring
e separation of course content and logic for drill and practice programs
such as occur most frequently in industrial training situations.

213

No attempt at completeness was intended with the above lists. They are
merely useful to illustrate that the two approaches mentioned earlier - namely,
starting either from scratch or with a defined lexicon - have both been ‘
attempted using a variety of different routes. The trade-off between
choosing one or the other lies in the amount of effort needed to modify
an existing lexicon for the special requirements of CAI. Generally
speaking, however, a start from scratch involves considerably more work
than using an existing lexicon as a basis. The advantage might be
increased efficiency because the operators and functions can be specifically
designed to serve the needs of CAl. However, with current hardware, this
advantage is no longer a serjous one, because on a large computer the
amount of CPU time consumed during one hour of terminal time seldom
exceeds three seconds. Even on small systems (e.q., I8M 1500), a student
rarely consumes more than 30 seconds of CPU time per hour of sign-on
time in CAI mode. It would be a mute exercise Lo expend much effort toward
reducing these times. Hence, the more viable choice would be to base
the design of a high level authoring language on an existing lexicon of
symbols.

Economic considerations, then, would dictate that the use of an existing
lexicon be at least seriously investigated before one would dismiss it
as an unsuitable alternative. Whereas this task may at first glance
appear to involve the investigation of a bewildering array of pro-
gramming languages with regard to their suitability, this is not really so.

Since CAI has been around for several years now, one can make use of
the knowledge of hundreds of CAI authors by simply looking at their
language preference. Table 1 indicates that the overwhelming majority
of authors appears to favour one of three languages for writing CAI e
programs, namely, CWR, APL, and/or BASIC. In fact, 66% of all CAI programs
published until 1971 were written in one of these three languages,
while the remaining 34% were spread over 61 other languages. Whereas
there is a possibility that a real gem of a language exists among the
61 "others", the chance of an oversight by so many authors groping for
a "better” language appears slim. In addition, one must consider the ,
availability factor: at least one of the above three languages is available
on a variety of widely marketed computers, while the gem might not be. Hence,
practical considerations would dictate a choice from among CWR, APL, or
BASIC as a foundation for a higher level authoring language.

CONSIDERATIONS FOR CHOOSING A LEXICON

At the extremes, a lexicon of operations may be either machine oriented,
or problem oriented. The functional restrictions of the hardware avail-
able during the early 1960's forced the language designers of those days
to accommodate their designs to such hardware restrictions as small memory
sizes and limited amount of auxiliary storage. Hence, most languages
dating back to that era are characterized by compromises toward machine
orientation, rather than probiem orientation. Since the CWR language
originated at that time, it contains several examples of machine-oriented
compromises - the most serious ones being the lack of floating-point
arithmetic, severe limitations on the number of variables, the lack of branch-
ing into (and returning from) other available courses (e.g., CMI), and lack
of any but the simplest level of response analysis. é

At the other end of the machine versus problems oriented continuum
is APL. In its original form, APL was devised as a means to improve the

10

precision ot communication among scientists. It is, therefore, totally probiem
oriented, containing symbols for expressing all known arithmetic and

logical operations, as well as a host of manipulative operations such as
matching, merging, ranking, expanding, reducing, shaping, catenating,
rotating, inverting, randomizing, dealing, selecting, reversing, trans-
posing, decoding, and many more. In addition, combinations of these

basic operations produce numerous new possibilities., For example, summation
is achieved by combining the basic operations of addition and reduction.

Even though the symbols in the APL-lexicon are precisely defined, their
implementation on computers became feasible only after the hardware advanced
to the technological level of the late 1960's. The problem orientation

of APL is evident in the fact that its current (November 1972) implementation
level offered as a program product by IBM lacks certain features which are
distinctively and exclusively features associated with the manipulation of
computer hardware rather than with the problem at hand. For example, at

the present time, APL cannot generate or access data files used in other

data processing activities, and it lacks a facility to change the internal
representation of bit-strings into a variety of formats as required for numeric
or alphameric manipulation, interpretation by the compiler, or formating

of output. However, since several APL users (York University, I.P. Sharp
and Assoc.) have succeeded to include these facilities into their APL
systems, it would appear likely that future versions of APL will include
these operators which permit hardware manipulations.

Due to its problem-orientation, APL has been received with great
enthusiasm by those who can 1ive within the above mentioned constraints.
Particularly, the scientific and academic community has found that the
Tanguage 15 an excellent vehicle for writing problem solving algorithms,
as one needs not concern oneself with intricate rules based on hardware
dependencies, but can concenirate totally on the problem. The language,
therefore, appears much more "natural: than, for example, CWR, FORTRAN,
etc. These latter languages continually force one to "fit" or "tailor"
the problem into the constraints or dimensions imposed by the hardware,
as ref;ected in the language, thus diverting attention from the problem
at hand.

By contrast, the hardware is totally transparent to the APL user. This
advantage is, of course, purchased at a price. Since APL is a problem
oriented language implemented in interpretive mode, one cannot conveniently
generate object decks. In other words, the program is interpreted every
time it is executed. Benchmarks obtained with commercial rrograms
indicate that an APL program may execute up to four times slower than
an object program derived from a well-accepted conventional language,
depending on the amount of "looping". VYet, as was discussed earlier,
this is not a serious consideration in CAI, since the CPU-time for execut-
ing CAI programs is usually ninute anyway, and there is very little looping.

BASIC, having been specifically designed for mini-computers, can
ba classified between CWR and APL. Its machine-orientation is apparent,
but it does have the restrictions of CWR with respect to floating-point
arithmetic, or the limitations on the number of varizbles. A good example
illustrating the very detailed appearance of a CAl program using the NEW
BASIC/CATALYST system can be found in Duyer. (2)

It is apparent, then, that none of the three languages above is totally
ideal. Each one has certain advantages, as well as serious disadvantages.
The problems encountered in each language have been overcome in some

11

215

localities, but these solutions are usually not universally available.

For example, floating-point routines for CWR have been written at the
University of Texas, and by this author. However, the inclusion of these
routines may slow down course-execution on small computers such as the

IBM 1500. The remedies concerning APL have already been ment{oned. Note
that the resulting non-compatability of courses requiring the above mentioned
"customizing" of the CAl-language produces an undesirable fragmentation of
CAI efforts,

To arrive at a decision regarding the choice of a lexicon, one must then
adopt a broader perspective than the mere weighing of current advantages
versus disadvantages. Hence, an attempt is made here to 1ook at the problem
dynamically in a time frame, and to project some future trends.

Consider the fact that all the hardware constraints which produced the
limitations in CWR no longer apply to current hardware, e.4., smal] memories
and limited auxiliary storage. Consider further, that these same constraints
formerly inhibited the introduction of APL, However, now that APL {s
feasible, its usage is increasing exponentially (user growth is 407
annually). It has been introduced into American schools ranging from
public schools to universities. There are few universities where APL {s
not available, and several require facility with APL as part of their
degree requirements, for example, all graduate students at UCLA's Graduate
School of Management must show proficiency in APL as part of the requirements
for the master’'s degree. APL is so easy to Tearn and to use that efghth
grade students in Atlanta have been taught to write CAl modules in German,
and to produce programs for simulating games. The March 1972 {ssue of
the Computing Newsletter (University of Colorado) recently described APL
as '"the language of the 4th generation computers®.

The prediction for APL, then, is certainly one of accelerating avaf{l-
ability and usage. Also, as development costs increase and the cost of CPU
time continues to decrease, the “pay-off" for switching to APL becomes more
and more attractive for commercial users. This process will, of course,
be gradual, and will not likely lead to the fmmediate obsolescence of
other languages. However, if APL continues its present course of expansion,
it will likely capture almost all new development effort by the end of
the decade. This will be especially so in CAI, because the current user
investment in established CAI languages is not of such magnitude as, for
example, the investment in FORTRAN or COBOL. As Table 1 indicates, new
CAl programs are already written in much greater quantity in APL than 1in
CWR. Hence, one could expect that CWR usage may reach its peak in about
1975, and decline gradually from then on.

By contrast, BASIC requires a different set of considerations, because
it addresses the mini-computer market. Neither CWR nor APL are available
on mini-computers. Due to their low cost, sales of mini-computers are
increasing. Consequently, one can expect increasing usage of BASIC in
the near term future. Mith the introduction of virtual memory, and the
rapid advances in semi-conductor memory technology, however, a sharp
increase in the round-the-clock availability of time-sharing services
which will greatly diminish the need for "in-house" mint-computers can
be expected. This, then, will Tikely lead to a gradual decline in sales
of mini-computers in the second half of the decade, and a comensurate
reduction of the use of BASIC.

12

- -

In summary, it has been shown that none of the three languages
(CWR, APL, BASIC) {s ideally suited for a CAl lexicon in thefr current
state of implementation. CWR lacks floating-point arithmetic and in-core
variable storage. APL lacks file access, and input-output formating
features. BASIC is oriented toward record-processing, and would require
specfal functions to handle many CAl applications. A1l of these short-
comings have been overcome through customized modifications and additions
at one place or another. Hence, they are not insurmountable, making it
difficult to Lase one's choice of a lexicon for a high level language on
the technical merits alone.

Therefore, the problem was additionally viewed in a dynamic time-frame
covering the decade of 1970-1980. 1In this context, it would appear that
a number of circumstances will aid APL to continue its exponential user
growth. These are primarily: ease of usage, adaptability of the lanquage
for writing problem solving algorithms, and increased "round-the-clock"
availability of computers due to rapid developments in time-sharing
techniques. Hence, APL will likely be the single most available lexicon for
CAl purposes by the end of this decade. In view of this, it would seem
most appropriate to use APL as a basis for a high level CAl language.

SUMMARY AND CONCLUSIONS

The preceding analysis showed that incraasing numbers of CAI authors
are choosing APL for writing CAI programs. In addition, several APL
users have shown that a CAI meta-language based on APL is feasible
(c.f., ATS - Cornell University; CAT - Erindale College; CAL - Golden
West Coilege). Hence, it would seem fruitful to design a meta-language
based on APL which would embody functions for the various instructional
strategies and differing types of response analyses discussed in this
paper.

These functions should ideally be designed to accept appropriately
arranged lesson material, as well as a set of suitable parameters pertain-
ing to this material and the instructional model being used. Such a
meta-language would greatly facilitate the use of CAI by a non-sophisticated
teacher-author because most of the parameters could be defaulted until
some expertise with entering instructional material into the system is
gained. The aim is to make the computer transparent to the user, and to
permit him ultimately to merely state the content of his lesson, and the
strategy of presentation.

13
217

REFERENCES
Grubb, R. E. A design language and system for computer-assisted

instruction programs. New York: IBM Education Research, and
CoTumbia University, 1972.

Dwyer, T. A. Teacher/student authored CAI using the NEWBASIC system.
Communications of the ACM, 1972, 15, 1, pp. 21-28.

Lekan, H. A. (Ed) 1Index to computer-assisted instruction (3 ed).
New York: Harcourt, Brace, Jovanovich, 1971.

Peuchot, M. The problem of computer/student dialog. Pedagogic, 1968.
20, 5-6, pp. 504-515.

Zinn, K. L. Computer technology for teaching and research on instruction.

Review of Ed. Research, 1967, 27, 5, pp. 618-634.

14

